

FEmethods documentation

FEmethods is a python package designed to analyse structural elements using
Finite Element Methods (FEM) to solve for element reaction forces and calculate
the deflection of the element.

Using FEM has the advantage over closed form
(exact) equations because it uses numerical techniques that can easily be used
on many different load cases, including statically indeterminate cases. The
disadvantage of FEM is that it will have less accuracy then the exact equations
derived for a particular case.

Note

This package is currently a work-in-progress.

Table of Contents:

	Introduction
	Installation

	FEmethods Package
	Elements

	Loads

	Mesh

	Reactions

Indices and tables

	Index

	Module Index

	Search Page

Introduction

This is the introduction to FEmethods. It will introduce Finite Element Methods
in general, and then give a few examples of how to use FEmethods.

The code can be found on github.com [https://github.com/josephjcontreras/FEmethods]

Installation

	FEmethods is hosted on PyPi, so installation is straightforward.

	>>>pip install femethods

	It can also be installed from source.

	>>>git clone https://github.com/josephjcontreras/FEmethods.git

Then to test that the installation worked properly, you can try this simple
example case of a simply supported beam with a single, centered point load.

>>>from femethods.elements import Beam
>>>from femethods.reactions import PinnedReaction
>>>from femethods.loads import PointLoad

>>>b = Beam(30, loads=[PointLoad(-100, 15)], reactions=[PinnedReaction(x) for x in [0, 30]])

>>>b.solve()
>>>print(b)

PARAMETERS
Length (length): 30
Young's Modulus (E): 1
Area moment of inertia (Ixx): 1
LOADING
Type: point load
 Location: 15
 Magnitude: -100
REACTIONS
Type: pinned
 Location: 0
 Force: 50.0
 Moment: 0.0
Type: pinned
 Location: 30
 Force: 50.0
 Moment: 0.0

FEmethods Package

This section will go into details on how each module should be called.

	Elements

	Loads

	Mesh

	Reactions

femethods.elements module

The elements module contains finite element classes

Currently the only element that is defined is a beam element.

	
class femethods.elements.Beam(length: float, loads: List[Load], reactions: List[Reaction], E: float = 1, Ixx: float = 1)[source]

	Bases: femethods.core._base_elements.BeamElement

A Beam defines a beam element for analysis

A beam element is a slender member that is subjected to transverse loading.
It is assumed to have homogeneous properties, with a constant
cross-section.

	Parameters

	
	length (float) – the length of a beam. This is the total length
of the beam, this is not the length of the meshed
element. This must be a float that is greater than 0.

	loads (list) – list of load elements

	reactions (list) – list of reactions acting on the beam

	E (float, optional) – Young’s modulus of the beam in units of
\(\frac{force}{length^2}\). Defaults to 1.
The \(force\) units used here are the same
units that are used in the input forces, and
calculated reaction forces. The \(length\) unit
must be the same as the area moment of inertia
(Ixx) and the beam length units.

	Ixx (float, optional) – Area moment of inertia of the beam.
Defaults to 1. This is constant (constant cross-sectional
area) along the length of the beam. This is in units of
\(length^4\). This must be the same length unit of
Young’s modulus (E) and the beam length.

	
bending_stress(x, dx=1, c=1)[source]

	returns the bending stress at global coordinate x

Deprecated since version 0.1.7a1: calculate bending stress as Beam.moment(x) * c / Ixx

	
deflection(x: float) → numpy.float64[source]

	Calculate deflection of the beam at location x

	Parameters

	x (float | int) – location along the length of the beam where
deflection should be calculated.

	Returns

	deflection of the beam in units of the beam length

	Return type

	float

	Raises

	
	ValueError – when the \(0\leq x \leq length\) is False

	TypeError – when x cannot be converted to a float

	
moment(x: float, dx: float = 1e-05, order: int = 9) → numpy.float64[source]

	Calculate the moment at location x

Calculate the moment in the beam at the global x value by taking
the second derivative of the deflection curve.

\(M(x) = E \cdot Ixx \cdot \frac{d^2 v(x)}{dx^2}\)
where \(M\) is the moment, \(E\) is Young’s modulus and
\(Ixx\) is the area moment of inertia.

	Parameters

	
	x (int) – location along the beam where moment is calculated

	dx (float, optional) – spacing. Default is 1e-5

	order (int, optional) – number of points to use, must be odd.
Default is 9

	Returns

	moment in beam at location x

	Return type

	float

	Raises

	
	ValueError – when the \(0\leq x \leq length\) is False

	TypeError – when x cannot be converted to a float

For more information on the parameters, see the scipy.misc.derivative
documentation.

	
plot(n=250, title='Beam Analysis', diagrams=None, diagram_labels=None, **kwargs)[source]

	Plot the deflection, moment, and shear along the length of the beam

The plot method will create a matplotlib.pyplot figure with the
deflection, moment, and shear diagrams along the length of the beam
element. Which of these diagrams, and their order may be customized.

	Parameters

	
	n (int) – defaults to 250:
number of data-points to use in plots

	title (str) – title on top of plot

	diagrams (tuple) – defaults to
(‘shear’, ‘moment’, ‘deflection’)
tuple of diagrams to plot. All values in tuple must be strings,
and one of the defaults.
Valid values are ('shear', 'moment', 'deflection')

	diagram_labels (tuple) – y-axis labels for subplots.
Must have the same length as diagrams

	Returns

	Tuple of matplotlib.pyplot figure and list of axes in
the form (figure, axes)

	Return type

	tuple

Note

The plot method will create the figure handle, but will not
automatically show the figure.
To show the figure use Beam.show() or
matplotlib.pyplot.show()

Changed in version 0.1.7a1: Removed bending_stress parameter

Changed in version 0.1.7a1: Added diagrams and diagram_labels parameters

	
shear(x: float, dx: float = 0.01, order: int = 5) → numpy.float64[source]

	Calculate the shear force in the beam at location x

Calculate the shear in the beam at the global x value by taking
the third derivative of the deflection curve.

\(V(x) = E \cdot Ixx \cdot \frac{d^3 v(x)}{dx^3}\)
where \(V\) is the shear force, \(E\) is Young’s modulus and
\(Ixx\) is the area moment of inertia.

	Parameters

	
	x (int) – location along the beam where moment is calculated

	dx (float, optional) – spacing. Default is 0.01

	order (int, optional) – number of points to use, must be odd.
Default is 5

	Returns

	moment in beam at location x

	Return type

	float

	Raises

	
	ValueError – when the \(0\leq x \leq length\) is False

	TypeError – when x cannot be converted to a float

For more information on the parameters, see the scipy.misc.derivative
documentation.

	
static show(*args, **kwargs) → None[source]

	Wrapper function for showing matplotlib figure

This method gives direct access to the matplotlib.pyplot.show function
so the calling code is not required to import matplotlib directly
just to show the plots

	Parameters

	args/kwargs – args and kwargs are passed directly to
matplotlib.pyplot.show

femethods.loads module

Module to define different loads

	
class femethods.loads.Load(magnitude: Optional[float], location: float = 0)[source]

	Bases: femethods.core._common.Forces

Base class for all load types

Used primarily for type checking the loads on input

	
name = ''

	

	
class femethods.loads.MomentLoad(magnitude: float, location: float)[source]

	Bases: femethods.loads.Load

class specific to a moment load

	
name = 'moment load'

	

	
class femethods.loads.PointLoad(magnitude: Optional[float], location: float)[source]

	Bases: femethods.loads.Load

class specific to a point load

	
name = 'point load'

	

femethods.mesh module

Mesh module that will define the mesh.

	
class femethods.mesh.Mesh(length: float, loads: List[Load], reactions: List[Reaction], dof: int)[source]

	Bases: object

define a mesh that will handle degrees-of-freedom (dof), element lengths
etc.

the input degree-of-freedom (dof) parameter is the degrees-of-freedom for
a single element

	
dof

	Degrees of freedom of the entire beam

	Returns

	Read-only. Number of degrees of freedom of the beam

	Return type

	int

	
lengths

	List of lengths of mesh elements

	Returns

	Read-only. List of lengths of local mesh elements

	Return type

	list

	
nodes

	

	
num_elements

	Number of mesh elements

	Returns

	Read-only. Number of elements in mesh

	Return type

	int

femethods.reactions module

The reactions module defines different reaction classes

A reaction is required to support an element to resist any input forces.

There are two types of reactions that are defined.

	PinnedReaction, allows rotational displacement only

	FixedReaction, does not allow any displacement

	
class femethods.reactions.FixedReaction(location: float)[source]

	Bases: femethods.reactions.Reaction

A FixedReaction does not allow any displacement or change in angle

A FixedReaction resists both force and moments. The displacement and the
angle are both constrained and must be zero at the reaction point.
FixedReactions are typically applied at the ends of a Beam.

	Parameters

	location (float) – the axial location of the reaction along the
length of the beam

	
name

	short name of the reaction (fixed). Used internally

	Type

	str

Warning

The name attribute is used internally.
Do not change this value!

	
name = 'fixed'

	

	
class femethods.reactions.PinnedReaction(location: float)[source]

	Bases: femethods.reactions.Reaction

A PinnedReaction allows rotation displacements only

A PinnedReaction represents a pinned, frictionless pivot that can
resist motion both normal and axial directions to the beam. It will not
resist moments.
The deflection of a beam at the PinnedReaction is always zero, but
the angle is free to change

	Parameters

	location (float) – the axial location of the reaction along the
length of the beam

	
name

	short name of the reaction (pinned). Used internally

	Type

	str

Warning

The name attribute is used internally.
Do not change this value!

	
name = 'pinned'

	

	
class femethods.reactions.Reaction(location: float)[source]

	Bases: femethods.core._common.Forces

Base class for all reactions

The Reaction class defines general properties related to all reaction
types.

	Parameters

	location (float) – the axial location of the reaction along the
length of the beam.

Note

Any force or moment values that where calculated values are
invalidated (set to None) any time the location is set.

	
force

	the force of the reaction after it has
been calculated

	Type

	float | None

	
moment

	The moment of the reaction after it has
been calculated

	Type

	float | None

	
boundary

	

	
invalidate() → None[source]

	Invalidate the reaction values

This will set the force and moment values to None

To be used whenever the parameters change and the reaction values are
no longer valid.

	
location

	Location of the reaction along the length of the beam

The units of the length property is the same as the units of the beam
length.

The value of the location must be a positive value that is less than
or equal to the length of the beam, or it will raise a ValueError.

Note

The force and moment values are set to None any time
the location is set.

	
name = ''

	

	
value

	Simple tuple of force and moment

	Returns

	tuple (force, moment)

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 femethods	

 	
 	
 femethods.elements	

 	
 	
 femethods.loads	

 	
 	
 femethods.mesh	

 	
 	
 femethods.reactions	

Index

 B
 | D
 | F
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | V

B

 	
 	Beam (class in femethods.elements)

 	
 	bending_stress() (femethods.elements.Beam method)

 	boundary (femethods.reactions.Reaction attribute)

D

 	
 	deflection() (femethods.elements.Beam method)

 	
 	dof (femethods.mesh.Mesh attribute)

F

 	
 	femethods (module)

 	femethods.elements (module)

 	femethods.loads (module)

 	
 	femethods.mesh (module)

 	femethods.reactions (module)

 	FixedReaction (class in femethods.reactions)

 	force (femethods.reactions.Reaction attribute)

I

 	
 	invalidate() (femethods.reactions.Reaction method)

L

 	
 	lengths (femethods.mesh.Mesh attribute)

 	
 	Load (class in femethods.loads)

 	location (femethods.reactions.Reaction attribute)

M

 	
 	Mesh (class in femethods.mesh)

 	moment (femethods.reactions.Reaction attribute)

 	
 	moment() (femethods.elements.Beam method)

 	MomentLoad (class in femethods.loads)

N

 	
 	name (femethods.loads.Load attribute)

 	(femethods.loads.MomentLoad attribute)

 	(femethods.loads.PointLoad attribute)

 	(femethods.reactions.FixedReaction attribute), [1]

 	(femethods.reactions.PinnedReaction attribute), [1]

 	(femethods.reactions.Reaction attribute)

 	
 	nodes (femethods.mesh.Mesh attribute)

 	num_elements (femethods.mesh.Mesh attribute)

P

 	
 	PinnedReaction (class in femethods.reactions)

 	
 	plot() (femethods.elements.Beam method)

 	PointLoad (class in femethods.loads)

R

 	
 	Reaction (class in femethods.reactions)

S

 	
 	shear() (femethods.elements.Beam method)

 	
 	show() (femethods.elements.Beam static method)

V

 	
 	value (femethods.reactions.Reaction attribute)

 All modules for which code is available

	femethods.elements

	femethods.loads

	femethods.mesh

	femethods.reactions

 Source code for femethods.elements

"""
The elements module contains finite element classes

Currently the only element that is defined is a beam element.

"""

from typing import Any, List, TYPE_CHECKING, Tuple
from warnings import warn

import matplotlib.pyplot as plt
import numpy as np
from scipy.misc import derivative

local imports
from femethods.core._base_elements import BeamElement
from femethods.core._common import derivative as comm_derivative

if TYPE_CHECKING: # pragma: no cover
 from femethods.loads import Load # noqa: F401 (unused import)
 from femethods.reactions import Reaction # noqa: F401 (unused import)

noinspection PyPep8Naming
[docs]class Beam(BeamElement):
 """A Beam defines a beam element for analysis

 A beam element is a slender member that is subjected to transverse loading.
 It is assumed to have homogeneous properties, with a constant
 cross-section.

 Parameters:
 length (:obj:`float`): the length of a beam. This is the total length
 of the beam, this is not the length of the meshed
 element. This must be a float that is greater than 0.
 loads (:obj:`list`): list of load elements
 reactions (:obj:`list`): list of reactions acting on the beam
 E (:obj:`float`, optional): Young's modulus of the beam in units of
 :math:`\\frac{force}{length^2}`. Defaults to 1.
 The :math:`force` units used here are the same
 units that are used in the input forces, and
 calculated reaction forces. The :math:`length` unit
 must be the same as the area moment of inertia
 (**Ixx**) and the beam **length** units.
 Ixx (:obj:`float`, optional): Area moment of inertia of the beam.
 Defaults to 1. This is constant (constant cross-sectional
 area) along the length of the beam. This is in units of
 :math:`length^4`. This must be the same length unit of
 Young's modulus (**E**) and the beam **length**.

 """

 def __init__(
 self,
 length: float,
 loads: List["Load"],
 reactions: List["Reaction"],
 E: float = 1,
 Ixx: float = 1,
):
 super().__init__(length, loads, reactions, E=E, Ixx=Ixx)

[docs] def deflection(self, x: float) -> np.float64:
 """Calculate deflection of the beam at location x

 Parameters:
 x (:obj:`float | int`): location along the length of the beam where
 deflection should be calculated.

 Returns:
 :obj:`float`: deflection of the beam in units of the beam length

 Raises:
 :obj:`ValueError`: when the :math:`0\\leq x \\leq length` is False
 :obj:`TypeError`: when x cannot be converted to a float
 """

 # TODO: store the lengths/node locations in the class so they only have
 # to be assessed without recalculating
 nodes = self.mesh.nodes

 # validate that x is a valid by ensuring that x is
 # - x is a number
 # - 0 <= x <= length of beam
 try:
 x = float(x)
 except ValueError:
 raise TypeError(
 f"Cannot calculate deflection with location of type: {type(x)}"
)

 if x < 0 or self.length < x:
 raise ValueError(
 f"cannot calculate deflection at location {x} as "
 f"it is outside of the beam!"
)

 # Using the given global x-value, determine the local x-value, length
 # of active element, and the nodal displacements (vertical, angular)
 # vector d
 for i in range(len(self.mesh.lengths)):
 if nodes[i] <= x <= nodes[i + 1]:
 # this is the element where the global x-value falls into.
 # Get the parameters in the local system and exit the loop
 x_local = x - nodes[i]
 L = self.mesh.lengths[i]
 d = self.node_deflections[i * 2 : i * 2 + 4]
 return self.shape(x_local, L).dot(d)[0]

[docs] def moment(self, x: float, dx: float = 1e-5, order: int = 9) -> np.float64:
 """Calculate the moment at location x

 Calculate the moment in the beam at the global x value by taking
 the second derivative of the deflection curve.

 .. centered::
 :math:`M(x) = E \\cdot Ixx \\cdot \\frac{d^2 v(x)}{dx^2}`

 where :math:`M` is the moment, :math:`E` is Young's modulus and
 :math:`Ixx` is the area moment of inertia.

 .. note: When calculating the moment near the beginning of the beam
 the moment calculation may be unreliable.

 Parameters:
 x (:obj:`int`): location along the beam where moment is calculated
 dx (:obj:`float`, optional): spacing. Default is 1e-5
 order (:obj:`int`, optional): number of points to use, must be odd.
 Default is 9

 Returns:
 :obj:`float`: moment in beam at location x

 Raises:
 :obj:`ValueError`: when the :math:`0\\leq x \\leq length` is False
 :obj:`TypeError`: when x cannot be converted to a float

 For more information on the parameters, see the scipy.misc.derivative
 documentation.
 """

 # TODO: Update so that moment can be calculated at both ends of beam
 if x < 0.75:
 # this cut-off was found experimentally. Anything less than this,
 # and calculating the derivative is unreliable
 warn("Calculated moments below 0.75 may be unreliable")

 try:
 return (
 self.E
 * self.Ixx
 * derivative(self.deflection, x, dx=dx, n=2, order=order)
)
 except ValueError:
 # there was an error, probably due to the central difference
 # method attempting to calculate the moment near the ends of the
 # beam. Determine whether the desired position is near the start
 # or end of the beam, and use the forward/backward difference
 # method accordingly

 if x <= self.length / 2:
 # the desired moment is near the beginning of the beam, use the
 # forward difference method
 method = "forward"
 else:
 # the desired moment is near the end of the beam, use the
 # backward difference method
 method = "backward"
 return (
 self.E
 * self.Ixx
 * comm_derivative(self.deflection, x, method=method, n=2)
)

[docs] def shear(self, x: float, dx: float = 0.01, order: int = 5) -> np.float64:
 """
 Calculate the shear force in the beam at location x

 Calculate the shear in the beam at the global x value by taking
 the third derivative of the deflection curve.

 .. centered::
 :math:`V(x) = E \\cdot Ixx \\cdot \\frac{d^3 v(x)}{dx^3}`

 where :math:`V` is the shear force, :math:`E` is Young's modulus and
 :math:`Ixx` is the area moment of inertia.

 .. note: When calculating the shear near the beginning of the beam
 the shear calculation may be unreliable.

 Parameters:
 x (:obj:`int`): location along the beam where moment is calculated
 dx (:obj:`float`, optional): spacing. Default is 0.01
 order (:obj:`int`, optional): number of points to use, must be odd.
 Default is 5

 Returns:
 :obj:`float`: moment in beam at location x

 Raises:
 :obj:`ValueError`: when the :math:`0\\leq x \\leq length` is False
 :obj:`TypeError`: when x cannot be converted to a float

 For more information on the parameters, see the scipy.misc.derivative
 documentation.
 """
 return (
 self.E
 * self.Ixx
 * derivative(self.deflection, x, dx=dx, n=3, order=order)
)

[docs] def bending_stress(self, x, dx=1, c=1):
 """
 returns the bending stress at global coordinate x

 .. deprecated:: 0.1.7a1
 calculate bending stress as :obj:`Beam.moment(x) * c / Ixx`

 """
 warn("bending_stress will be removed soon", DeprecationWarning)
 return self.moment(x, dx=dx) * c / self.Ixx

 @staticmethod
 def __validate_plot_diagrams(diagrams, diagram_labels):
 """
 Validate the parameters for the plot function
 """

 # create default (and complete list of valid) diagrams that are
 # implemented
 default_diagrams = ("shear", "moment", "deflection")
 if diagrams is None and diagram_labels is None:
 # set both the diagrams and labels to their defaults
 # no need for further validation of these values since they are
 # set internally
 return default_diagrams, default_diagrams

 if diagrams is None and diagram_labels is not None:
 raise ValueError("cannot set diagrams from labels")

 if diagram_labels is None:
 diagram_labels = diagrams

 if len(diagrams) != len(diagram_labels):
 raise ValueError(
 "length of diagram_labels must match length of diagrams"
)
 for diagram in diagrams:
 if diagram not in default_diagrams:
 raise ValueError(
 f"values of diagrams must be in {default_diagrams}"
)
 return diagrams, diagram_labels

[docs] def plot(
 self,
 n=250,
 title="Beam Analysis",
 diagrams=None,
 diagram_labels=None,
 **kwargs,
):
 """
 Plot the deflection, moment, and shear along the length of the beam

 The plot method will create a :obj:`matplotlib.pyplot` figure with the
 deflection, moment, and shear diagrams along the length of the beam
 element. Which of these diagrams, and their order may be customized.

 Parameters:
 n (:obj:`int`): defaults to `250`:
 number of data-points to use in plots
 title (:obj:`str`) defaults to 'Beam Analysis`
 title on top of plot
 diagrams (:obj:`tuple`): defaults to
 `('shear', 'moment', 'deflection')`
 tuple of diagrams to plot. All values in tuple must be strings,
 and one of the defaults.
 Valid values are :obj:`('shear', 'moment', 'deflection')`
 diagram_labels (:obj:`tuple`): y-axis labels for subplots.
 Must have the same length as `diagrams`

 Returns:
 :obj:`tuple`:
 Tuple of :obj:`matplotlib.pyplot` figure and list of axes in
 the form :obj:`(figure, axes)`

 .. note:: The plot method will create the figure handle, but will not
 automatically show the figure.
 To show the figure use :obj:`Beam.show()` or
 :obj:`matplotlib.pyplot.show()`

 .. versionchanged:: 0.1.7a1 Removed :obj:`bending_stress` parameter
 .. versionchanged:: 0.1.7a1
 Added :obj:`diagrams` and :obj:`diagram_labels` parameters

 """

 kwargs.setdefault("title", "Beam Analysis")
 kwargs.setdefault("grid", True)
 kwargs.setdefault("xlabel", "Beam position, x")
 kwargs.setdefault("fill", True)
 kwargs.setdefault("plot_kwargs", {})
 kwargs.setdefault("fill_kwargs", {"color": "b", "alpha": 0.25})

 diagrams, diagram_labels = self.__validate_plot_diagrams(
 diagrams, diagram_labels
)
 fig, axes = plt.subplots(len(diagrams), 1, sharex="all")
 if len(diagrams) == 1:
 # make sure axes are iterable, even if there is only one
 axes = [axes]

 xd = np.linspace(0, self.length, n) # deflection
 x, y = None, None
 for ax, diagram, label in zip(axes, diagrams, diagram_labels):
 if diagram == "deflection":
 x = xd
 y = [self.deflection(xi) for xi in x]
 if diagram == "moment":
 x = xd
 y = [self.moment(xi, dx=self.length / (n + 3)) for xi in x]
 if diagram == "shear":
 x = np.linspace(0, self.length, n + 4)[2:-2]
 y = [self.shear(xi, dx=self.length / (n + 4)) for xi in x]

 # regardless of the diagram that is being plotted, the number of
 # data points should always equal the number specified by user
 assert len(x) == n, "x does not match n"
 assert len(y) == n, "y does not match n"

 ax.plot(x, y, **kwargs["plot_kwargs"])
 if kwargs["fill"]:
 ax.fill_between(x, y, 0, **kwargs["fill_kwargs"])
 ax.set_ylabel(label)
 ax.grid(kwargs["grid"])

 locations = self.mesh.nodes # in global coordinate system
 axes[-1].set_xlabel(kwargs["xlabel"])
 axes[-1].set_xticks(locations)

 fig.subplots_adjust(hspace=0.25)
 fig.suptitle(title)
 return fig, axes

[docs] @staticmethod
 def show(*args: Any, **kwargs: Any) -> None:
 """Wrapper function for showing matplotlib figure

 This method gives direct access to the matplotlib.pyplot.show function
 so the calling code is not required to import matplotlib directly
 just to show the plots

 Parameters:
 args/kwargs: args and kwargs are passed directly to
 matplotlib.pyplot.show
 """
 plt.show(*args, **kwargs) # pragma: no cover

 def __str__(self) -> str:
 assert self.loads is not None
 assert self.reactions is not None

 L = ""
 for load in self.loads:
 L += "Type: {}\n".format(load.name)
 L += " Location: {}\n".format(load.location)
 L += " Magnitude: {}\n".format(load.magnitude)

 r = ""
 for reaction in self.reactions:
 r += "Type: {}\n".format(reaction.name)
 r += " Location: {}\n".format(reaction.location)
 r += " Force: {}\n".format(reaction.force)
 r += " Moment: {}\n".format(reaction.moment)

 msg = (
 "PARAMETERS\n"
 f"Length (length): {self.length}\n"
 f"Young's Modulus (E): {self.E}\n"
 f"Area moment of inertia (Ixx): {self.Ixx}\n"
 f"LOADING\n"
 f"{L}\n"
 f"REACTIONS\n"
 f"{r}\n"
)
 return msg

 Source code for femethods.loads

"""
Module to define different loads
"""

from typing import Optional

from femethods.core._common import Forces

[docs]class Load(Forces):
 """Base class for all load types

 Used primarily for type checking the loads on input
 """

 name = ""

[docs]class PointLoad(Load):
 """
 class specific to a point load
 """

 name = "point load"

 def __init__(self, magnitude: Optional[float], location: float):
 super().__init__(magnitude, location)

[docs]class MomentLoad(Load):
 """
 class specific to a moment load
 """

 name = "moment load"

 def __init__(self, magnitude: float, location: float):
 super().__init__(magnitude, location)

 Source code for femethods.mesh

"""
Mesh module that will define the mesh.
"""

from typing import List, Sequence, TYPE_CHECKING

if TYPE_CHECKING: # pragma: no cover
 from femethods.reactions import Reaction # noqa: F401 (unused import)
 from femethods.loads import Load # noqa: F401 (unused import)

[docs]class Mesh(object):
 """define a mesh that will handle degrees-of-freedom (dof), element lengths
 etc.

 the input degree-of-freedom (dof) parameter is the degrees-of-freedom for
 a single element
 """

 def __init__(
 self,
 length: float,
 loads: List["Load"],
 reactions: List["Reaction"],
 dof: int,
):
 self._nodes = self.__get_nodes(length, loads, reactions)
 self._lengths = self.__get_lengths()
 self._num_elements = len(self.lengths)
 self._dof = dof * self.num_elements + dof

 @property
 def nodes(self) -> Sequence[float]:
 return self._nodes

 @property
 def dof(self) -> int:
 """
 Degrees of freedom of the entire beam

 Returns:
 :obj:`int`: Read-only. Number of degrees of freedom of the beam
 """
 return self._dof

 @property
 def lengths(self) -> List[float]:
 """
 List of lengths of mesh elements

 Returns:
 :obj:`list`: Read-only. List of lengths of local mesh elements
 """
 return self._lengths

 @property
 def num_elements(self) -> int:
 """
 Number of mesh elements

 Returns:
 :obj:`int`: Read-only. Number of elements in mesh

 """

 return self._num_elements

 def __get_lengths(self) -> List[float]:
 # Calculate the lengths of each element
 lengths: List[float] = []
 for k in range(len(self.nodes) - 1):
 lengths.append(self.nodes[k + 1] - self.nodes[k])
 return lengths

 @staticmethod
 def __get_nodes(
 length: float, loads: List["Load"], reactions: List["Reaction"]
) -> Sequence[float]:
 nodes: List[float] = [0] # ensure first node is always at zero (0)

 # Ignore the type checking for the for loop adding lists of loads and
 # lists of reactions. There is no + operator defined for these, but it
 # will combine the lists using the built in list addition. Which is the
 # desired behavior
 # noinspection PyTypeChecker,Mypy
 for item in loads + reactions: # type: ignore
 nodes.append(item.location)
 nodes.append(length) # ensure last node is at the end of the beam
 nodes = list(set(nodes)) # remove duplicates
 nodes.sort()
 return nodes

 def __str__(self) -> str:
 s = (
 "MESH PARAMETERS\n"
 f"Number of elements: {self.num_elements}\n"
 f"Node locations: {self.nodes}\n"
 f"Element Lengths: {self.lengths}\n"
 f"Total degrees of freedom: {self.dof}\n"
)
 return s

 Source code for femethods.reactions

"""
The reactions module defines different reaction classes

A reaction is required to support an element to resist any input forces.

There are two types of reactions that are defined.

 * PinnedReaction, allows rotational displacement only
 * FixedReaction, does not allow any displacement

"""
from typing import Optional, Tuple

from femethods.core._common import Forces

BOUNDARY_CONDITIONS = Tuple[Optional[int], Optional[int]]

[docs]class Reaction(Forces):
 """Base class for all reactions

 The Reaction class defines general properties related to all reaction
 types.

 Parameters:
 location (:obj:`float`): the axial location of the reaction along the
 length of the beam.

 .. note:: Any force or moment values that where calculated values are
 invalidated (set to :obj:`None`) any time the location is set.

 Attributes:
 force (:obj:`float | None`): the force of the reaction after it has
 been calculated
 moment (:obj:`float | None`): The moment of the reaction after it has
 been calculated
 """

 name = ""

 def __init__(self, location: float):
 super().__init__(magnitude=None, location=location)
 self.force = None
 self.moment = None
 self._boundary: BOUNDARY_CONDITIONS = (None, None)

 @property
 def boundary(self) -> BOUNDARY_CONDITIONS:
 return self._boundary

 @property
 def location(self) -> float:
 """
 Location of the reaction along the length of the beam

 The units of the length property is the same as the units of the beam
 length.

 The value of the location must be a positive value that is less than
 or equal to the length of the beam, or it will raise a ValueError.

 .. note:: The force and moment values are set to :obj:`None` any time
 the location is set.
 """
 return self._location

 @location.setter
 def location(self, location: float) -> None:
 # The location is overloading the location property in Forces so that
 # the reaction can be invalidated when the location is changed
 if location < 0:
 # location cannot be a negative number
 raise ValueError("location must be positive!")
 self.invalidate()
 self._location = location

 @property
 def value(self) -> Tuple[Optional[float], Optional[float]]:
 """
 Simple tuple of force and moment

 Returns:
 :obj:`tuple` (force, moment)
 """
 return self.force, self.moment

[docs] def invalidate(self) -> None:
 """Invalidate the reaction values

 This will set the force and moment values to :obj:`None`

 To be used whenever the parameters change and the reaction values are
 no longer valid.
 """
 self.force, self.moment = (None, None)

 def __str__(self) -> str:
 return (
 f"{self.__class__.__name__}\n"
 f" Location: {self.location}\n"
 f" Force: {self.force}\n"
 f" Moment: {self.moment}\n"
)

 def __repr__(self) -> str:
 return f"{self.__class__.__name__}(location={self.location})"

 def __eq__(self, other: object) -> bool:

 if not isinstance(other, self.__class__):
 return False

 if (
 self.location == other.location
 and self.force == other.force
 and self.moment == other.moment
):
 return True

 return False

[docs]class PinnedReaction(Reaction):
 """
 A PinnedReaction allows rotation displacements only

 A PinnedReaction represents a pinned, frictionless pivot that can
 resist motion both normal and axial directions to the beam. It will not
 resist moments.
 The deflection of a beam at the PinnedReaction is always zero, but
 the angle is free to change

 Parameters:
 location (:obj:`float`): the axial location of the reaction along the
 length of the beam

 Attributes:
 name (:obj:`str`): short name of the reaction (pinned). Used internally

 .. warning:: The **name** attribute is used internally.
 Do not change this value!
 """

 name = "pinned"

 def __init__(self, location: float):
 super().__init__(location)
 # limit the vertical displacement but allow rotation
 self._boundary: BOUNDARY_CONDITIONS = (0, None)

[docs]class FixedReaction(Reaction):
 """
 A FixedReaction does not allow any displacement or change in angle

 A FixedReaction resists both force and moments. The displacement and the
 angle are both constrained and must be zero at the reaction point.
 FixedReactions are typically applied at the ends of a Beam.

 Parameters:
 location (:obj:`float`): the axial location of the reaction along the
 length of the beam

 Attributes:
 name (:obj:`str`): short name of the reaction (fixed). Used internally

 .. warning:: The **name** attribute is used internally.
 Do not change this value!
 """

 name = "fixed"

 def __init__(self, location: float):
 super().__init__(location)
 # do not allow vertical or rotational displacement
 self._boundary: BOUNDARY_CONDITIONS = (0, 0)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 FEmethods documentation

 		
 Introduction

 		
 Installation

 		
 FEmethods Package

 		
 Elements

 		
 Loads

 		
 Mesh

 		
 Reactions

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

